Cloud cover continues to make observing a bit of a challenge but we have had the odd clear sky recently and what a delight it was to see Orion as beautiful as ever. Observing The chart below represents the south facing night sky at 10.00pm on the 8th February and at 9.00pm on the 23rd February. Again Orion and the Winter Triangle (formed by Betelgeuse, Sirius and Procyon) provide all the navigational help required. Last month we were spoilt with all the wonderful bright stars on display but this month you will need to find a dark sky location to observe some dimmer objects. Perhaps you need to have your lockdown exercise walk in the evening to a suitable site free from light pollution. Of course the bright stars are still there but we will be concentrating more on the region to the east of them. To the north-east of Orion it is easy to pick out the bright stars Castor and Pollux in the constellation Gemini- The Twins, but there is more to the constellation than just those two stars. The bodies of the twins are represented by two lines of faintish stars ending with their feet in the Milky Way. These stars are typically of magnitude 3 to 4 and may be a bit of a challenge depending on light conditions but there is a magnitude 1.9 star, Alhena, representing the feet of Pollux and you should be able to pick it out on a line from Betelgeuse to Pollux.
Now to three new constellations:- Monoceros- The Unicorn, Cancer- The Crab and Hydra- The Water Snake. The bad news is that they lack an abundance of bright stars. However it is easy to know where to look for Monoceros because it is in the middle of the Winter Triangle, bathed in the brightness of the Milky Way. Its brightest star is barely magnitude 4 so to the unaided eye this constellation doesn’t provide very much so we will move on. The constellation of Cancer is one of the zodiacal constellations so needs a mention. It is the faintest of them and is fairly easy to find lying between Gemini and Leo and forming a triangle with the stars Pollux and Procyon. It doesn’t have a particularly distinct pattern but it does have an open cluster, Praesepe, (marked on the chart with a red cross and also known as ‘the Beehive’) which contains about fifty young stars and covers an area the equivalent of three full moons and being in a dark area away from the Milky Way it provides a hazy glow to the unaided eye in good conditions. You will need a pair of binoculars to resolve the individual stars. Finally, Hydra- The Water Snake is the longest of the constellations and stretches about one quarter of the way around the sky with its head in the northern hemisphere and its tail in the southern hemisphere. It is difficult to trace out the chain of relatively faint stars but the six stars forming its head are more conspicuous. The brightest star, Alphard, representing the heart of the snake, is of magnitude 2 and lies alone in a blank region of the sky so is easier to spot on a line from Betelgeuse to just below Procyon and extended about the same distance again. Let’s hope for some really clear skies so that some of these dimmer objects stand out. Something to look out for There is a New Moon on the 11th February so an opportunity for dark skies in the middle of the month. You may also care to look out for the waxing crescent Moon on the following days to the WSW just after sunset. Mars is now in Aries and has a close approach with the Moon on the 19th February. The pair will be visible from 6.00pm onwards above your southern horizon with the Moon passing 3.5 degrees (7 Moon diameters) to the south of Mars after 10.00pm. before sinking towards the horizon and setting after midnight. Of course throughout the month you can continue to enjoy Orion, The Winter Hexagon and the Winter Triangle.
0 Comments
In my November 2020 Blog we considered colliding galaxies; we saw that the number density of stars in the Galaxy was so small (just one star per 2.63 cubic parsecs) that collisions between stars are very rare events. Let’s look at a much smaller volume of space - the solar system. Here, number densities are much higher – there are eight major planets, thousands of asteroids and an unknown number of comets. Collisions are much more frequent, although less frequent now than in earlier epochs. Anyone who’s observed the Moon through binoculars or a telescope knows that the Moon’s surface has many craters. Craters are the result of impacts between massive bodies in evolving planetary systems. This is believed to be a fundamental process in planetary formation. The Barringer crater in Arizona (Figure 1) is the most perfectly preserved impact structure on Earth. The reasons this crater is so perfectly preserved include the very dry Arizona climate and the fact that the impact event happened very recently in astronomical terms – about 50,000 years ago. The crater is approximately 1.2km wide and 170m deep and was formed by the impact of a nickel-iron meteorite just 50m in diameter. How could such a small object create a hole so much larger? The answer lies in the enormous kinetic energy of the impact. Kinetic energy scales linearly with mass and exponentially (specifically a square law) with velocity: Typically, an impacting asteroid will have a velocity between 15 -30 km per second. The kinetic energy of the Barringer impact is estimated to have caused a blast equivalent to the detonation of a 10-12 megaton bomb. The main cause of damage after impact would have been due to the atmospheric shock wave. Two km from the impact site, the shock wave would have arrived approximately 6 seconds after impact. The peak overpressure would have been around 95.1 psi (normal air pressure is 14.7 psi). The maximum wind velocity would have been an astonishing 1360 mph (approximately Mach 1.8) and the sound Intensity 117 dB (i.e. threshold of pain). That’s quite a score sheet. But, as Table 1 shows, the Barringer event was actually a relatively small event in solar system terms.
Simple and complex impact structures The Barringer crater is an example of a simple impact crater, having a bowl shape with a covering of shattered rock and mineral fragments. On Earth, simple craters are generally less than 4 km in diameter (Ball, Kelley and Peiser, 2007). Larger impactors produce complex impact craters. Large-diameter craters develop not only a central peak, but often one or more peak rings (French, B 1998) and also concentric ring structures. Many examples of this are seen on the Moon, such as the crater Tycho (Figure 2 and Figure 3) Why are impact craters circular? One might conclude that if the impactor arrived exactly at 90° to the impact site, the crater would be circular. Otherwise it might be more oblate in shape. In fact, nearly all impact craters we observe are more or less circular, as shown by the examples in Figure 4 and Figure 5 below. The basic mechanism of impact crater formation is an explosion rather than a ‘skid mark’. Earthquake or volcanic events can be quite geographically widespread, and particularly in the case of volcanic activity, take place over relatively long timescales. Impact events are concentrated at a single point on a planetary surface. The release of enormous amounts of kinetic energy takes place in the case of a small crater in a fraction of a second; and even in the case of a larger impactor in just a few minutes over tens or hundreds of kilometres (French, B 1998). Counting impact craters On planetary surfaces, the more craters there are, the older the terrain is believed to be. This is the case of the heavily crated regions of Mercury (Figure 6). However, there are other considerations as well. On Mars, the surface has experienced erosion as well as burial of craters (Figure 7). a surface covered with many small craters on Mars is often one that is more resistant to erosion, and not necessarily older. Observation of impacts There have been quite a few impacts observed on Earth and elsewhere in the Solar system. A small meteorite impacted Mars’ surface sometime between September 2016 and February 2019 – the uncertainty being because the MRO can’t be everywhere at once. The impactor is estimated to have been about 1.5m in diameter and the resulting crater to be 15 to 16 meters in diameter (Figure 8). Comet Shoemaker–Levy 9 was a comet that broke apart into 21 main fragments in July 1992 and collided with Jupiter in July 1994. This was the first time a cometary impact with a Solar system planet had been observed. As Jupiter is a gas giant, no crater was formed as such. However, the vast impact scars caused by the explosive entry of the comet were very evident (Figure 9). The Chelyabinsk meteor was a small asteroid about 17 meters in diameter that struck Earth's atmosphere at an estimated 18km/second over the city of Chelyabinsk, Russia, on Feb. 15, 2013. The incident was captured on dashcam footage and the luminosity of the object was comparable to the solar luminosity. The atmospheric pressure shock wave caused major damage over a very wide area and over 1200 people were injured.
The largest meteorite fall recorded (NB ‘recorded’, not ‘happened’) in the UK occurred in the Leicestershire village of Barwell on the evening of Christmas Eve 1965. Several villagers did what any English person would do: they reported the matter to the Police, who duly took several fragments into custody. Subsequently, many fragments were found around the local area; the largest weighed over 7.7 kg so it was very lucky nobody was hurt. Among those to visit Barwell not long after the event was Patrick Moore (then, plain Mr. Moore, later Sir Patrick). He found a fragment of the meteorite and offered it to the local museum. He later said, “They told me ‘we have plenty of it so you can keep it for display as long as you make sure it comes to us in your will’”. There is a wonderful story about a Barwell resident whose car was damaged in the incident and he tried to claim off his insurance. His insurers helpfully told him it was an Act of God and therefore they were not liable to pay for the damage. So, he went along to the local church and said since it was an Act of God maybe they could pay, but they didn’t do so. References Katz, B (2019). An Ancient Asteroid Crater May Be Hiding Off Scotland’s Coast https://www.smithsonianmag.com/smart-news/ancient-asteroid-crater-may-be-hiding-scotlands-coast-180972393/ Accessed January 6th 2021. Matson, J (2010). Meteorite That Fell in 1969 Still Revealing Secrets of the Early Solar System. https://www.scientificamerican.com/article/murchison-meteorite/ Accessed January 6th 2021. Earth Impact Database (EID) Ball, A; Kelley, S; Peiser, B (2007). Near-Earth objects and the impact hazard. ISBN 978 0 7492 1887 4 French B. M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. Hirata, N; Ohtsuki, K Keiji; Suetsugu, R (2020). A Huge ring-like structure on the surface of Jupiter’s moon Ganymede may have been caused by a violent impact https://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2020_08_05_01.html Accessed January 6th 2021. For me personally the ‘great conjunction’ of Jupiter and Saturn in December was a big disappointment because whenever I tried to make an observation the cloud to the SW horizon thwarted me. I hope some of you had better luck. However 2020 wasn’t all bad from an astronomical point of view as witnessed by the reminiscing at our online Christmas party of what had been observed throughout the year so let’s look forward to what this year will bring. Observing We had a broad look at the sky last month so we will focus in more detail on the winter sky facing south this month.The chart below represents the south facing night sky at 10.00pm on the 8th January and at 9.00pm on the 23rd January. No need for navigational help this month because Orion is so obvious but facing south and looking up you will find the bright star Capella just short of your zenith. With clear skies we are in for a treat because we have seven of the twelve brightest stars visible from the northern hemisphere. You will be familiar with the chart above but I’ll fill in some details for completeness sake. We have already come across four of the constellations- Orion- The Hunter, Taurus- The Bull, Auriga- The Charioteer and Gemini- The Twins. The two new constellations are Canis Major- The Great Dog and Canis Minor- The Little Dog. In mythology they are the dogs of the hunter Orion but from an observational point of view these constellations are small with little to offer apart from their main stars, Sirius (alpha Canis Major, the brightest star visible from the northern hemisphere) and Procyon (alpha Canis Minor, the 6th brightest star). Incidentally they are two of our Sun’s closest neighbours, Sirius being 8.6 light years distant and Procyon 11.4 light years. These two stars along with Betelgeuse in Orion form an asterism known as the Winter Triangle depicted in yellow in the diagram.
But Betelgeuse is roughly in the middle of another asterism- the Winter Hexagon comprising the stars Sirius, Rigel, Aldebaran, Capella, Pollux and Procyon and depicted by the red outline in the diagram. It is obvious with the unaided eye that these stars are different and within that grouping, including Betelgeuse, you will find a yellow giant (binary twin), a red supergiant, a blue supergiant, a red giant, a yellow star and two stars which are part of a binary system with a white dwarf (not visible to the unaided eye). And allowing for variability they all have a magnitude of about 1 or brighter.If that doesn’t make you reflect on what you are looking at in the winter night sky I don’t know what will. Now that we are in lockdown again if you are not sure which star fits into which category why not do a little research to fill in your time of an evening! You may be thinking I’ve said nothing about Castor, the second bright star in Gemini, because it’s not as bright as the others but in fact it is an amazing star in its own right.To the unaided eye, the star Castor appears as a bright pinpoint of light but it’s actually three pairs of binary stars – six stars in all – in a complex dance about a common centre of mass. Even a fairly small telescope will show Castor as two stars and perhaps a glimpse of a much fainter star nearby, also part of the Castor system. Each of these three stars is also double but they cannot be resolved in a telescope and have to be inferred from spectroscopic data. Something to look out for Although the ‘great conjunction’ is now in the past, Jupiter and Saturn continue to be of interest as they have a close approach with the planet Mercury between the 9th and 14th of January, visible above the south-west horizon from around 4.30pm as darkness falls, and you need to be quick as they are visible for only a short time. On the final day they are joined by a crescent Moon. We will be saying ‘Goodbye’ to Saturn and Jupiter as they are lost to view behind the Sun but Mercury continues to its greatest elongation and highest altitude above the horizon on the 27th January. Let’s hope for some clear skies to show off the winter night sky to its best. |
AuthorWMA members Archives
July 2024
Categories |